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na t::sa bourdary tjondallocs govevoiag vatfima 
•ntlwja as i3eit;eiTOlj' MS possible,, ana to diaoßss 
■pzüf-is-'tixm of auch coyt-.vc.ua,    the special models 
ctafat! strn{    perfectly -jlastie bodlosj thftraoelastic 
OU3, '".Ofp.prö-sii-iblc*, and heat-confluötingr fluids; 
«B?  :iad, particularly, plastic bodies«    T?;i*i first 

trtiTi pr'lNeicls» governing the ;i-iMoi» o!" all Mat»*- 
rm. "iit;! K'VTOS f«r»u"ö.viC'»a of n'hes thorite of par- 
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"be p'ir;;r-i.t.i  zf Yn-'t"- I '.;VIT.-M^;> /'O   IS  It fevatalate in ths «tost 
^fcne^aj  ?'wi'i: ''A':  It'-Hcs   I"K-.':■■:,i\r ■,■:■-* '.i,oil on 'if IkvTtofiiaa oon* 
;in;»K,    rinamtieal say: Jyva'Jnio :': ■' L itlOiM SUJCI llffet'Bnti.sl 
njcaiianj. s.r« sl^p-lv «r,.3',,.;<•<   bet 1 !v- printf". plo cf conner-rvnttor. 
or onsr^r 1:  d...f.c?en»*cl in par« lou-iA beoau.°,3 to tlw becjt cf 
the a-itiwiti   ■? iu^lc.^o v».-: prwil.TUK !;v9f.ta»«v, is euufioiently 
gßtoral f* ".'f.,5 T.i-..'».*.ou}..'iy ooacisjt .    ':'-. rt VT.X1' restates the 
assumptions ,:•:? <v".-r olaaaica^. line«]' tb-xriari -/■' eÜastJ.üit? i:.m* 
of T.tsco-,.0 : ::.'-iir.:ö .'or .jD:Tpti.r;'.8on f Itr. t>:? '.v.vm general phy« 
s.lcal den:-, •.••ou;? ^r.v-au 3et-fii%    ?.'.vt IX iofiße^ a oheiatalSj 
aijeplc bt'd.y    in flh*«b 'isoh^r.cfA H'färgy «vl b*:«:t;.Äl oriafa." 'r« 
iiistinci c-rr-iiu:3.    V&:*% V ^»':^c-*nli.;cs Lf-arsw5:r«u*e th-ory o:' 
I'ißlte dcfori:--i'üf.on of ft la at A« solids ao <?B S*,O a^plr t? non- 
losogesjfiiun becHöi, non-'crAfwasly boated,    ^-rt C -jontaine an 
'iisalcgpcp j,i r..-> «ill  Si?^oi*y of iriseo«;,;; fluids, i.-i rli.l'r   Vm el< sr.i 
sal Naviur-; i'-i'tea «ciuutlos ivpyearr «is ä linear sp^sroxltsitiori« 
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if© «spicy tho orc'inery notation of tensor analysis, e„ g„, 

i« 
lira 

ÜKüIASS JFTFD 

tecsor field of rank 5, contravariant of rank 2, 
corariant of rank 3, all indices running independent- 
ly from 1 to 3. 
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A* B* 

i ' 

Si.,. 

*i»r 
j 

A 

*• • « jX 

i' AIiJ ^       raided» covariant, fcdd eontravarlent con- 
J      ~" ponants of the saise tensor field, s 

j    covariaat derivative of A ""   with resceot to s4. 

al a2" 

bl b2* 

a. 

ft. 

«ultra variant derivative of A"*  with respect to %  . 
«• •« 

Cljristoffel symbols of the second ki.nd 

0  if a»/ two superscripts or any two subscripts 
are equal or if the Sj ere not the sajae numbers 
as the b*j 

» 41  if b^ h, »• b. »nay be obtained froa a« tt2 "• aV 
\    by ag even permutation« 

U'l  if b, b- »» b. say be obtained fro» &j ag „. e^, 

% ensploy also the special notations of Murrsagban (ref„ a}, which are 
explained in section II,. In particular, indices written to the right denote 
Fuisri&-;i tensor components; ahile Indices wittyn to the left denote 
Lagrangian tensor components» For example, f,s denotes the ©©variant 
derivative with respect to the lagrangian erördinate **a of the Euleriaa 
eontravaricmt vector field a ,, 

I, Introduction 

A aewtoniaa continuum we shall define as a finite or infinito closed re- 
gion of Euclidean thrse- dinensior»! spaoo, at oach point of which? with the 
possible exception of isolated s:*ts of points of dimension less than three, 
thery exist, the following primitive characteristic functions; 

density 

stress tensor 

internal energy par unit mm     e? 

specific entropy   s; 

heat- flot? vector      tL j 

ami whose topological tranaforraation in ttee into a finite nusber of other 
closed regions is governed by the principle« of none©rvat.ion of ssass,, moae»» 
to», .«mi energy0 
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Vit »xtrpi>s-:-s -i?<£;     !.. i to state the t'.roe funr"<ajeenial jjr5nciplss in 
their '.tost genial fotiaj    (B) to foiailate the equations governing {••«ffiebly 
elastic bodi-s.»}    (<j) to f-jriailsts the equations gövernlM viscous Cluida. 
Our treatment in not r-ist^icted tv homogeneous or Isotropie bodies, nor are 
»e eoKcerrj-afi -.It!-- the linear approximations employed ia the classical theorize,. 
In our trcata-int of perfectly elastic solids ws fellow Mv-xnaghan (ref. a), 
whosa notation ^c adopo, rjenarelissing his results 30 that the;- apply be 
nonhofiogeaeoua -ird non-uclfpralj heated bodies..   ?roa our point of view a dis«- 
biiiguirfilog characteristic of Lurnaghan's work Is that he defines an elastic 
solid act by vttf particular stress*strain relations, linear or otherwises bit 
by specifying that the free energy- function Mist depend only upon tbe gradients 
ef the defanrstio» and that tho temperature ha constant during the deformationi 
he tana givzs Pirthewatieal expression to cur intuitive concept of perfect 
filmstf,eityd    'ffce classical linear Hooke's law then appears in his theory as a 
first-order t. TfToxi^&i ioi 0    The K?.in object of the present pater is to pres-rat 
a similar formLation of the theory of viscous fluids,,   'We aeek a jtathene.ti- 
eal expression for the intuitive concept of 1 fluid and are led to specify 
the oaanftT in «stich the dissipation function taay depend upon the velocity fra* 
di*yats..    the pressure   and fche temperatures    the classical linear Savier* 
Stakes 1m? appears in our theory as a £irst.*order approximation.    On:.* genexal 
dissipation function, if broken off after the cubic terms, becomes identical 
»1th tbe "Viscous" partion of the dissipation function for slip flow ealöü" 
Istfid by Burnett (quoted in ref» b, pt. 656) from the kinetic thaory of gas«: 

Let 'a be the initial or Lagreaglan coort-im tee of a point In an arbi • 
Vrrj Euclidean coordinate systest^ and xr the final or fculerian coordinate'! 
c:   the a&iae point,,    lb* motion   of the materiel coptiuuu® is expressed EB  1 
sweuencs of typological bransforaetiocs, s3" * 5? (•'■a^a^a,  t), 
'"•• •'- "V \x'^3-^t t), where   t   is the timo.    £. moving point, identified 
t,:~ the fi'igrnnfdan aocrdinatyg r3, •■?ill ofte:i %s called a wir^riclQ, The cox 
paints of the I/^rarfi*-.n atsS f>i,l«rian strain tensors „-,0   arid   £,    ore d&» 
it.jeu t'eppec'i^.ve.--^  bj' tue icc\';uls.s 

Ä/ (i -Ä>r, ^1 

"^f- rit f ■■■■ i ^     dÜx'cf.V' 

iKif  '•i-'J05;:   5.ß the squired ttleutent of arc ieegth a+- si apeaj 
t , sad (it)    is t'^ao at ts^e   t. 

ified Udtial 

r ■" ccpoacnta of tfce w-ilocit.y .vector   V   are given by the risfinitio? 
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«rhere subscript variables *,*■* held constant *« ** 

satss-jgaa '*** *f •*-«- -'•.««- ««u. u 

Thea 
«TO!;**,*' ^^ 

—  .«3.1" ■— 

(5) 

(6) 

<7e shall tacitly assuwe that the velocity end the acceleration, as well 
as various other funetlcna later to be defined with the aid of Sifferentiatics, 
exist and are continuous functions of space and tisa except possibly on certain 
singular surfaces, lines, or points» The various differential equations which 
m  shall deduce are not to be expected to remin valid or meaningful at these 
exceptional locations, where they oust be replaced by suitable limit or trans- fer conditions. 

The coEponents of the deformtion rate tgneor £ .. are £i?en by the 
definition  "*"*" ' " *""""" "^ *"""   J 

ihjrmghen (™f< *>  P.243) has shown that 
(7) 

(3) 

it being supposed that the Sulerian coordinate system is not in motion relativ 
to the cbeerTer,,    In tee liaear theories of plasticity (e.g, tef0 j)    it is 
cuetecary to approtslBttte the ceiaponanto of the gtrMa^ratc tcg-for, it^/ft 
by th© components of the deformtlon r?.to tensor ITT*, but in any exact con- 
sideration the two sets of tentsor components aust be diatirigutjbed.   A 
neceniary and sufficient condition thftt a given displace»ent be rigid is 

t< i   - O 
(9) 

«^^.Sffii^Ä^*«. interval of ti*o, the coition 

Aßt&j .~ r 6t   "° 

UNCLASSIFIED 
-5- 

(10) 
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throughout the interval, It is possible, however, that a body a»y he **> 
rigid motion at & given instant^ although at instants hefore and after it is 
deformei, 'JE"h© criterion for instantaneously rigid motion cannot he the 
equation (10), since the components of the strain-rats tensor ere by equa- 
tion (8) functions of the components of the strain tensor, which are computed 
with respect to a fixed initial configuration which can in no way influence 
the klnamatica of the present instant, k necessary and sufficient condition 
for instantaneously rigid notion is given by the equations of Killing (ref., i, 
p. 2U): 

£i;~0 (11) 

The components of tho deformation-rate tensor are in fact the tias rates of « 
change of the coEpoasatr of the strain tensor when the reference configura- 
tion with respect to which the components of the strain tensor tire computed 
is the infinltesiaally {receding on®; that is, If £ ±j (t2»%) are th© com- 
ponents of the strain tenser computed at the tiaxs tg with respect to the con- 
figuration at time t^, thai» 

?,-/;*,  ^fe^O-^ft.^) i2) 

while 

ot       &i->o At 
(13) 

The law of force? of a perfectly elastic body, whioh responds only to its de» 
formation from a preferred initial stete, we shall thus expect to employ  the 
components of the strain tensor £.£*<> The law of force of a type of plastic 
body Khich responds both to a preferred initial state and to the rat© at 
which it is being deformed fron that state «e shall sxpect to eiiploy both the 
oorrponents of the strain tensor &.jj and the components of the strain rat© 
tensor ftjjAi  s The law of force for a fluid, which exhibits no response 
whatever to any preferred state but resists being instantaneously deformed^ 
m shell szpect to employ only the components of the deforuation-rato tensor 
liy 
III. Conservation of Kags... 

Several different »ithsmatical expressions of the principle of conserva- 
tion cf waas are used in thu mechanics of contimia (ref. a, pp«, 244**2*i6j 
ref„ b, pp, X42-158}} oT these we shall require two: 

/> *Atf~*Tr+47zyri (U) 
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St 
v* = o . m 

In these expressions /> is the present density; /0o  the density at time t0s 
Ut  I2» I3 respectively the sum of the one-, two-, and threa-rowed principal 
minors or the str&Sjo n&trrix computed with respect to tin» t0: 

(16) 

IV« Conservation of MoiiHBntum 

Let T1«» be the components of the stress tensor and F* the components of 
external. Lforoe par unit volume»  Then in the absence of an external moment 
field the principle of conservation of noraentuiE 3tates that (ref. a, pp,244- 
246) 

TV - 
/ (17) 

•io( 

T ,* + F
l-oA*. {IB) 

Let ?rbe any scalar fUBetien of the Eulerian coordinates and the tia». 
Components WJJ of e fluid, stress tensor, are given by the definition 

W; 5 rrij t- 7-; 
The equations (17) and (18) now become 

(19) 

(20) 

K« + ir<< + ^ ~-?Al ' 
(a) 

These results are independent of what particular function rr  is used in equa- 
tion (19). '.'fe shall see later that it is usually convenient to let 7T"bo the 
thercodyna^c pressure & , to be defined presently, although sometimes it 
is the stress orSBsure giv^n by the definition 

.JL.'«**1 
(22) 

We postulate that tba energy associated with a continuum may be 
divided Into t«o ptrtai jjjipfl HOTT 6 P«P unit MM, and jfrfoetle <■ 
^r-   per unit mass.   Potential et >rgy, if it exists at all, we regard as 

UHCXASSirBD -7* NCLIf 9223 
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energy of the fi.jld of boiy force against which the particle does work, not 
a» energy of the particle itself, Tbua tha tot.«], energy of a finite valuta 
of the continauK is the integral cf p(t ^iy*J over  the volume« Then the 
principle of conservation of easrgy etatsa that the rate &t which energy is 
lost by an arbitrary flnita voluii» of ths oontiamut is eqeal to the rate at 
which pork is dene againsn body forces plus tho rate at which the stress ten- 
sor does «ork upon the boundary surface plus this rate at which hsat energy 
flows out across the boundary surface-? 

&'//& * i / Vrf ";t"r; (*c % ^^"j T v*% AS« -h f H 

where H are the component» of the heaj^-f^lojr vector per unit arua, ffieasnred 
in muchanical units, In prdbless of simple conduction, 

I Of   fi   C «0« (23) 

hi ~ 7~ (24) 

where T is the temperature and k   the coefficient of heat conductivity, but 
we shall not use this assumption5 lotting R. be sufficiently general to in« 
dude hsat ?.oasas by radiation, etc„ If m apply the divergence theorea to 
the surface integrals in formula (23) ? perform the differentiation on the 
left„ and equate tha integrand in the resulting voluire integral to zero3 so 
obtain the iorsriia of Aukeret and of tfogal (ref., <ij rsf« afl p5 5): 

(25) 

Sittralifying this equation riti the aid of the dyasisleal equations (17) ari! 
(If) v» find that 

C</Z       n -V; 
(26) 

This ia tha sracliaaicial form of the prineiplR of conservation of energy„   An 
equivalent formula has tae7? given by »iargulea., Leab, and Stewart (ref* b5 
p,646: ref\, i, p. 162), 

./a new sketch the joetn ution senatmetioa of a ^abancnaenologic&l theory 
of tiicTEiodyoaüiias which, wail« lees directly activated physically, ve prefer 
becauoe cf its mtheBatieal simplicity and olarit;.5 to the rcore conventional 
expo'jf.tioias onployirg different%vX t&csrasents arc aors iast**die.tfly fandli&r 
primitive concept«. 

The thsnuociyiacic principle of conservation cf siorgy is an indepsnnant 
postulate stating that tha Internal energy cf a given particle sray be con- 
sidere.1 at all ti'sei a function of its density ar«5 a -le^ yrlritive scalar 
function of the *a end t »drleh vm sliall call U-r  avoo-Af^c, entrjapa;   s- 
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ffetS^B*) i&ajt—t^^Oj (27) 

where the parameters B(-^,B/2>,...,B^\ are given functions of the lagrangian 
variables *a only» Theae parameters were introduced apparently by V. Bjerknec 
(raf. f, pp. 81-83) to represent continuous inhomogensity, sush as a distri- 
bution of salinity in water or humidity in ai*. A discontinuous inhomogeno- 
ity, such as surface of separation between water and mercury, is not represent- 
ed by Bjerknes's parameters, but appears in the mathematical treatment as a 
surface of discontinuity across which the differential equations are replaced 
by suitablo transfer conditions. The equation (27) is called the caloric 
equation of state: specifying the form of the function specifies the physi- 
cal nature of the continuum. If the parameters B(3^5 *B/2)»• - • *B ^vN do ^ 
actually occur in the equation (27), the continuum is homogeneous; 

The equation (27) is formulated on the Lagrangian plan. To obtain a cor- 
responding Bulerian equation of state, we differentiate the equation (27) k 
times with respect to tfjte (ref„ f, p»82), and then eliminate the parameters 
Bn\  from the resulting kfl equations, obtaining an end formula of the typs 

&,&&&,-'&'*')«>' 

(28) 

Thus the Eulerian equation of state ia not a scalar equation but a differen- 
tial equation of k—- orcter. 

Let the specific volutue be /: 

1-ne temperature f and the thermodycamie pressure 
variables given respectively by the definitions 

are two new state 

/ =(^ßyv/fl./*fl./ Jfi. 

T >CL. <<X 

(29) 

(30) 

(3D 

The theracdyaamlc measure ® does not necessarily have any connection what- 
ever with the strass pressure ß  given by the definition (22). We shall 
henceforth suppose that 9 an! s are always functionally related, so that 
the definition (30) is «lway3 meaningful. 

Let C be a given curve in the e,v,3ß,2ß,?a space, whose points are 
parametrised with the parameter 0 .  If 1» differentiate the equation of 
atat» (27) slong 0 and «rploy the definitions (30) and (31) of pressure and 
temperature we fiad that 
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(32} 

If «3 restrict oar attention to curves C along which ;i{ *<L)j x>{ ** ^ 
that is, to curvas representing changes under^ene by a given particle} we re- 
duce the equation -yi)  to the simpler forn 

In other word d&, thf formula 

<fe ö> 

X? * 7~" &L   T" AT" 
is Talid 1» any continents, hoaogeneo'as cr not, Hones 

fr  '^  "# 

(33) 

(34) 

(35) 

The equation (35) i3 the usual postulated for», of the first law of thenws- 
dysaisies, which se here regard instead as a consequence of the postulated 
existence cf a caloric equation of s'iate (27) end the definitions (30) and 
(3D , It is this relation which justifies physically our* use of the »ords 
"iem-eraturs'5 and rpressure" for the quantities 7~ ard £$ as given ay the 
fc-rnal definitions (30; axd (31). * 

In the social', caes when the coatlnuu» is homogeneous the equation (30) 
beceisen 

• &J 
d.i  _ Ai (36) 

whsra now the diff'c rant iat ion is along an arbitrary curve   G   in the otstv 
spam>   This statement is auch stronger than tfcr.t emhodlBd in equation (35) s 
since the changes included are net merely those suffered by a given particle, 
but isay involw passage to a is laboring article,-, Fortunately v;e shall not 
need to use equation (36) at all, so that our developments »ill be valM for 
inhor-ogenaous tnedii.» 

Let us no?f substitute the definition (19) of the tensor components 
and ;ihe therssodyaiu&c energy equation (35) into the ssecbcalofcl erergy equa- 
tion (26) J 

where the dissipation foatt^oja i\ is given by the definition 

(3?) 
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-w. & t« fi (33) 

With the aid of the equation of continuity (15) the equation (37) becooes 

fiT$ *(?-*-)V*,< + $+ H*tM > (39) 

In the definition (19) of the components W,., of the fluid stress tensor the 
scalar function W was left arbitrary. ietJus now define it to be the them»» 
dynanle pressure p  ,     Then the energy equation (39) becoaes simply 

The equation (40) adnits a sleple physical interpretations the rate at which 
beat is accxisulated. by a particle equals the rate at which work is being den* 
by the stress in deforming the ecntinuuas at the present location of the 
partiöle plus the rate at which boat is being added to the particle. 

$' 

The free energy 0 is a theraodyn&mie variable given by the definition 

5- ZI  < (41) 

In tares of 0 the energy equation (26) beeones 

The left side is the mta of increase of aeohanicftl energy of a given p&rticle, 
wfcil® the right §Me is the rate at which heat is being taken away froa that 
particle»   To deduce the equation (42) we have not used the first law of 
therwsdysattles (27) or the concepts of entropy «wd temperature»   The equation 
(42) ia fact is a eere reetttesont' of the aecbanicsd energy equation (26), 
dividing the internal ener^r iato a «aechanioal psrta, which wo way call 9, 
and a "caloric part," which we my call sT.    It is only in the application 
cf tho equation (42) as in pprt IX, that we use the »eaning of s and T to 
guide us in selecting proper postulates for special raodels of continue, 

A eontinutt« is said to be inoagvyeaslble if the density of each particle 
retains constant: 

The caloric equation of state of such a continnms ia then oT the for» 
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presaible continue if ß  is mTlL»i l       S° far r3Äiin 00^et for incest 
**» (15) becomes P  ls ^ 8t*ual to zero.   Since the continuity ^! 

V a 
M ■o, 

(45) (45 
the general energy equation (39) assumes the for» (40) independently of the 
choice of 7T.  Thus ir the theorj of incompressible continue the function 

IT in the definition (19) may remain undefined, fe shall see at the end 
of Pert, XI that in the classical linear theory of viscous Incompressible 
fluids the force lew requires 7T to be the stress pressure J&  . 

VI. Second tow *? '"*•  Second taw of Theraod^pamlcs^ 

if (46) 

*Ic=Ö 

(46) must be valid without exception. A consequence of 
nd the energy equation (A£)  i« 

for continuous media 

tf*/Jt  the inequality I/M>/ SSBS-C Cse valid without exs 
the inequality (46) and the energy equation (40) is 

(48) 

that ig, heat energy is absorbed (with a consequent entropy increase but with 
out an accompanying mechanic»! effect) by the particles interior to any closed 
surface S at a rat« at least equal to that at which heat energy flows into 
S from the surroundings. Thus media In which the inequality (46) holds 
without restriction cannot serve as heat engines» for they cannot convert 
thermal energy Itit' mechanical energy« It follows that (46) is not a general 
atat?3je»t of the second lasr of thermodynamics for continuous media• It holds 
only subject to the restriction (47). 

VII ^«aLBmateBjteflfeiatfl» of n«nrr 

or* inequality. e ^ *»• <***ined nine seal«, equ^l^ and 

Conservation of ;Sa£0; 

i^L£ ■^  V~s    TS   O  . (49) 
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Conservation of Wamttbmt 

Conservation of energy; 

1 ^   '   S>     " 

(505 

(51) 

(52) 

^il,ft-i/-vJ«. 
Second law of Thermodynamics: 

-C 

(53) 

(54) 

All the above equations are written on the Eulerian plan, .They form a eystea 
of 9 equations la 18 independent variables /> , e,s, V^T^E*,,  If ao in 
some electromagnetic phenomena the force field depends upon other fields 
which are in tux*a influenced by the motion of the contlmma, the number of 
dependent variables is increased, W© assume hero that the components of the 
external field F- ore given functions of space and tiae« Then to obtain a 
deteiminats systas we sust add 9 »ore equations«, 

No further physical principles are available, so Be must conclude that 
the notion of a Newtonian eontinuus is in general indeterminate. Bails a 
efcoaen specific form for the function f in the equation of 3tate (53) say 
well indicate certain fundamental physical characteristics of the continuum, 
it cs.nnot eoaipletejy sajm^-vize the asacroscoplc properties resulting fro» 
cheaäic&l composition axil the state of aggregation of the elementary particles 
In order to obtain a deteraiinrite system of equations without resort to a fine 
structure of theory- we generalise our eyperieaca with numerous physical 
bodies and construct, within the framework of the mechanics of continue out- 
line so far, various päe-ua^nologieal models, ideal cor.tinua which eabody 
abstractions of ihr behavior of classes of actual bodies. The simplest of 
ihes?; models ars the elastic sqljLd. and the viscous, fluid„ which wa shall 
diacuas presently, In defining a Kodel it is customary to postulate expres-  .„„ i....    —v j    _„ _.—.,.„,_, _ _.,— __ __ —_..       w 

sions for txJ and HA in terms of other variables,   H   will depend upon the 
temperature T, which did not occur in the equations (A9) *«• (53), ao it will 
be nacessary to add the definition (30),   Tie my in fact eliminate   s from 
the calorie equation of state (27) with the aid of the definition (30), then 
eliminate the UJ^rknes 'parameters as Jtefore, and thus deduce an equation of 
the for» 

(55) 
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uhiöh m may wsploy in place of the equation of state (53)» It»© specification 
of the stress fcsnaor Bast satisfy the symmetry relations (50) ami the inequa- 
lity (54). W« may now eliminate TlJ and H* fro» the equations (49) (51) (52) 
and (55), •shich Ijecomes a system of six equations in the six dependent 
variables A, e, T, V% 

VIII. |fee_CIass.ipal, Linear Theories, 

The classical theory of elasticity is based upon a postulated ^Linear 
relation between stress and strain: 

-<1 __ y"Xd? ~,4 (56) 

where the Gv| are constants of the material, while the classical theory of 
Tiscous fluids is based upon a postulated linear relation between viscous 
stress and deformation rates 

(57) 

where the Ggj are constants of the fluid. There is a complete formal ana- 
logy between the two theories tffaen the theory of elasticity is simplified by 
the further assumptions of small displacements, so that the Eulerian and 
Lagrangian description of the deformation approximately coalesce. and the 
furfchar assumption of small displacement gradients (or equivalently, small 
strain), so that the strain components my be approximated by linear expree«« 
siottu in the displacement gradients«, Then la rectangular Cartesian coordi« 
nafess the siross-strain relations for Isotropie materials become 

»hers u,v,Tf?., are the cpaponentg of, displacement and X and/* the efcstic, 
foerx'icientr; of Laras. In the classical theory of isotrople viscous fluids 
the V5soous-stross-deformation rate relations in rectangular Cartesian 
(lulcri&n plan) coordinatas are , 

%,-(^^)^^M^+^)1 (59) 

where now Vx,Vy, V3 are the components of the velocity M^ctor and/A   and /U 
are ihe .coefficienta of viBpoaity.    In contrast to the approximate equations 
(5S)j the equations "(59) require no geometric or kinesatio Approximations. 

The cls.acical approach to special models of contlnua has been strongly 
influenced b^ the dosire to obtain a final formulation consisting of simple 
differential equations which ia aimpla special applications     /be solved 
explicitly ia terms of simple and familiar special functions.   The availa- 
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bility of high-speed computing B»ebinee and of appropriate techniques of 
nnnerical integration suggests that the modern approach should emphasise 
correctness and generality rather than formal simplicity. Postulated illa- 
tions of the form (58} and (60) obscure the conceptual oasis of the theories 
of elasticity and fluid mechanics, because they obtrude their linearity and 
simplicity. In this paper we shall seek a more physical approach to the 
classical contiauu» theories by probing and clarifying the intuitive physi- 
cal concepts of sjlastioity and fluidity and then giving them mathematical 
forsa. lie shall see that the relations (58) and (59) then appear, as their 
linearity suggests, as first-order approximations in physically meaningful 
and inclusive general theories. 

IX« fhereally $imrle Bodies. 

k continuum in which heat energy la not converted into nsohanical 
energy and aechanicel energy is not converted into heat energy will be called 
thsnallS;. sjmple. The conservation of heat energy is expressed by postulat- 
ing the equation 

+ H*^ö (60) 

It than follows fros the energy equation (42) that 

s>£i --rx/S?    =.# (61) 

In problems of simple heat conduction , defined by the relation (24), the 
heat equation (60) becomes . 

f£&p*(kT^y' (62) 

Only in special cases, «eg,, the notion of a perfectly elastic body whose 
elastic coefficients are not functions of T or s, can the motion of a 
thermally simple body he determined without the aid of equation (62), Sfhen 
the aotion is known, p  is known, and then the equation (62) and the equa- 
tion of state 

("i (SL-Lm     Jo—T    rfti»X- xL—f. A / _ ~ —f- \  __ (63) 

fora ft system of two equations fro» which the two dependent variables   s and 
T   tsay be computed.    In problems of heat conduction without motion the system 
becorcos simply 

(64) 
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?(*$&*<>•< &/><*<T)**- (65) 

The sloplest possible case is that of a homogeneous body subject only 
to reversible heat flow. Then 

The equation (65) now becomes the ordinary equation of the conduction of 
heat; 

^T ~phz  (kT'*) (6?) 

Specifying ^ as a function of the X* and k as i function of the I1 and 
T then renders the equation (67) a single diff v.'*c>.aial equation in a ©ingle 
dependent variable T. 

X, perfectly Elastic Solids. 

Many actial bodies bahave in a Banner celled "perfectly elastic9 when 
they are subjected to sufficiently snail loadse   The body offers no internal 
resistance to rigid body notions „ The strain produced by a given load is 
independent of the rate at which the load is applied, and «teen the load is 
resold j the body returns to its initial configuration. Ho satter how »ay 
tinted loaded and unloaded* its response to the same load is always the saw. 
In short» an olastic body responds to its present strain fro« its preferred 
Initial state but sxhiblta no response whatever to its rate of deformation 
or to its pas'i states of strain«, Often not stated explicitly but essential 
ts the definition, is the requirement that during the deformation mechanical 
aaci thertaal energy are not interconvertible. 

ffe shall now give a precise mathematical for» to this somewhat vague 
concept of a perfectly elastic body. The energy requirement demands that 
a perfectly elastic body be thermally simple, so w have equations (60) and 
Oil}, The reCiUiressant that the body respond only to its strain fro» a pre- 
ferred initial ptate demands that the free enargy 0 dopend only upon the 
therraodynfiaie stata, tbe components *a,j of the gradients of the deforms«* 
tion^ the components ^c and g**   of the Lagrangian and Eulerian metric 
tensors respectively, and the inRomogeneity parameters ^h)* 

0*f(djZ'9 v ,/, S , 2(0 j Buh >'.> BN ) - 
(63) 

The occurrence of fi gives a conplete dependence upon the state, because 0 
itself is a state triable and the introduction of a second state variable 
in the functional Vorn (68) would necessarily reduce that relation to a 
general equation of state rather than a defining assumption from elastic 
body,   Th* tetrperature   T   would be a more natural representative of the efeaf 
tli&n the density /"■  , but it is not apparent   VJ    the subsequent analysis 
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could then be performed without IfurBaghan* s unnecessarily restrictive as- 
sumption that 1   is held constant during the motion, "a shall see that we 
may employ £ wit,yet by a suitable device reintroduee T later, when the 
analysis is complete. 

Since the strain components £** are functions of gjj and *a, » only, tha 
equation cf continuity (li) states tnat 

/»V^^j^>- (69) 

The initial density pQ is a function of the Lagrangian variables *a only, so 
it say be regarded as one of the parameters B{jj. Then by replacing /*» by 
its functional form (69) in the formula (68) we see that 9 must have the 
functional form 

Since £ is an Eulerian scalar and the only scalar functions of the tensor 
components g^ are numerical functions, the form (70) oust reduce to 

f * *Gj C. % 4 3(0, 3by ■; SIK}) . (71) 

The energy equation (61) implies that 

if - 0     wU*, a// #« €<-{- -O , 
In the functional form (71) only the gradients *a, * depend upon the time, 
so that 

Sir   *%) st 
From this point Hurnaghan's analysis needs no modification in order to re« 
main valid under our slightly more general assumptions* 3y insertion of 
the formula (73) into the condition (72) we may show that (ref„ a, pp,246-24?) 

h40jc''Jlt Bi>),B(ay-,B(k)}, in) 
Hence again using the energy equation (61) we may finally deduce (ref. a 
pp.256-257, 247-249) the general lagrangian stress-strain relations. 

(72) 

(73) 

^V&^W; 
the general Eulerian straeiv* strain relations: 

(75) 

(76) 

where 
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^JSJ^fXj^);    ' (77) 
and the stross-strain relations for Isotropie media: 

It can be shown that the last formula is consistent with the symmetry re- 
quirements (17} (ref. a, pp. 248-249). If in the Isotropie case the function 

J0O d   is expanded In a poorer series in the invariants (16), 

«here the ooefficients^^A^l, m, n,..., are functions of the Lagrangian 
coordinates only, the stress-strain relations (78) become (ref„ a, pp. 250- 
251) v ■ 

i 
(80) 

where the tensor components ^Z4 are computed from the equations 

i-y Cj —5; (81) 

In the foruuli (80) we have written down only terms up to and including those 
of second order in the components £/ ,  If we add the artificial requirr - 
meat that the Initial stress must vanish, we find that «**o .  Under the 
hypotheses of »mall strain and small displacement the general stress-strain 
relations reduos to the classical formulas (58), which now appears as a 
first-order approximation in an exact theory which completely embodies the 
notion of perfact alaatieity. 

form 
Since 0 is & state variable there exists an equation of state of the 

fi z/> (V, T, B(.), 3(3))-' -jBtKi) , <82) 

Xho expression (68) becomes 

Solving this equation for 4 we find that 

>(83) 

UNCUSSIFIED -18- NDLM  9223 



,„„, u,.r,AH-wSjCSastSaK™ 

Thus 0 is a function of f. Since T does not occur in I,, I.„ or I* it 
follows from the expansion (79) that in general the coefficients x ,K)flM 
1,51,3 are functions of temperature as well as of initial density /%   and 
other inhomogoneities represented by the B/^x. The dependence of the coef- 
ficients of elasticity upon the temperature cannot of itself describe thermo- 
elastic effects, which we have expressly excluded by the postulate that a 
perfectly elastic body is thermally simple. The effect of non-uniform heat- 
ing upon a body which cannot realise conversion of thermal into mechanical 
energy is rather to introduce an elastic inhomogeneity, so that it is not 
surprising that we were able to include these thermal effects in a develop- 
ment valid for inhomogeneous bodies. 

By expressing the components of the tensor T^ in terms of other 
variables we have added 6 of the 9 more equations which we found in part VII 
to be necessary to secure a determinate set of equations for the motion of 
a Newtonian continuum» If the coefficients of elasticity are not functions 
of T the equation of continuity (H) and the dynamical «auations (18) may 
be regarded as a system^of four equations in the four dependent variables 
XB.f

2&,\rf>  or x*,*2,.!- t/o , according as Bulerlan or Lagrangian descrip- 
tion is employed. The motion is then determined from purely mechanical 
considerations, and once it is known it may be substituted into the thermal 
energy equation (60) if we wish to determine the temperature distribution 
as well, provided we add the remaining 3 necessary equations by specifying 
the heat-flow field components K* as functions of the other variables and 
employ a suitable equation of state (63). If the coefficients of elasticity 
depend on the temperature, however, the problem of determining the motion 
cannot be solved without incidentally determining the accompanying tempera- 
ture distribution, and all the differential equations (14) (18) (60) (63) 
moat be solved simultaneously. This division of problems of elasticity 
into two classes according as the motion does or does not depend upon the 
thermal energy equation corresponds exactly to Bjerknee'a (ref. f,p. 84) 
division of problems of fluid mechanics into the classes of "pure hydrody- 
namics" and «physical hydrodynamics". 

n. Viscous Fluids 

In a very rough way we conceive a viscous fluid as a continuum which 
when at rest experiences a state of stress in which the normal components 
in all directions are equal and in which there are no shearing components, 
but which when subjected to change of shape experiences "viscous stresses". 
The viscous stresses are independent of the history of the fluid. There 
is no preferred initial state to which the fluid tends to return if the 
forces producing the motion be removed« It is therefore impossible that the 
viscous stresses be functions of the components of the strain»rate tensor 
(8), since these, in turn, depend upon the components of the strain tensor. 
In contrast to a perfectly elastic body, which responds only to its strain 
from a preferred initial state independently of all its history between that 
state and its present one, a viscous fluid responds only to its present 
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strain from the infinitesimalljr preceding state, in other words to its rate 
of defomcation,, The rate of viscous dissipation of energy should therefore 
be a function only of the components of the deformation rate tensor (7) and 
possibly also of the thenaodynamio state, and should vanish if the deforma- 
tion rate components vanish. Jfe my put the preceding physical considera- 
tions into a precise ssathejnatical form thusj 

£~$(£f*hP<T> St')* &*)<"''%«>X (85) 

WV r ö    ' f af/^  Z-'j-O. (36) 

The dissipation function J> is not a state variable, so two state variables 
must occur in it in order that its dependence upon the therBodynaadc state 
be as general as possible. We have chosen the temperature T and the therrao- 
dynamic pressure gf as a matter of convenience. As we stated earlier, the 
function 7T in the definition (19) of the tensor components W*J is to be taken 
as the thermodynaraic pressure p  for compressible fluids, and for incompress- 
ible fluids lift uMefined«, m have included the stress pressure p     in the 
for*: (85) so that even in the incompressible case, whan p -  0, some sort of 
pressure will appear in $    0 

Viscosity wa3 discussed by Maxwell in terms of the following ideal ex- 
periment. Let a viscous fluid be confined within a channel bounded by two 
parallel infinite walls, one of which is moving relatively to the other with 
a constant velocity«, The fluid will adhere to the walls and the retarding 
force will be proportional to the relative velocity and to the area in eon» 
tact, and inversely proportional to the di&tance between the walls» That is, 
there exists a modulus /A$ such that 

Force on mil - >J  ^tA?e Z&ggj&L&g two wa^g ,      -^^  (#j\ novce on wall -yd dlstance hetmeri mli8 (area in contact). (87) 

fife shall not employ the relation (87) as an actual algebraic formula, nor 
shall we utilize the ideal experiment just described to assist us in our def» 
inition of a viscous fluid in any way except to postulate: 

There exists a R&terial constant ,U0 of the dimensions 

C"J ■ |i««JyrLj {3s; 

The postulates (85) (86) and (88) we shall take as the defining postu- 
lates of a viscous fluid. 

Let d>   be expended in a power series: 
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where the coefficients are of the form 

(89) 

(90) 

The postal=te (86) and ths formula (33) then imply that 

11« o . <91> 
For the succeeding dimensional argument, let U3 suppose all formulas 

taken in rectangular Cartesian coordinates, eo that all tensor components 
assume their proper physical dimensions. Then since 

m LA~l 

L^     ««I  W-   •** 

It follows from formula (89) that 

■ -1 . 
[tiBeJ 

p      lj i2...ia 1    .,     JHgiJ [jawJ 
Ü?  JJJ2...J.J -  "^^ngthj*^* 

a-3 

(92) 

(93) 

(94) 

Prom formula (90) 

Then by the postulate (88) 

nfcere the function -£ is dimonsionles3. The parameters B/j* s© shall tf 
dimensionless, as if they are not dimensionless they may he divided by a, 
reference quantity of the same dimension. Than since the dimansionlass 
relation (95) connects three quantities of tu© independent dimensions, it 
muat not involve the temperature T at all unless there exists a reference 
temperature TJ and then it mast be of the form 

(95) 

take 

~£7 
"T~ \ 

<#) 
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Sow fro» foreula (90) 

T#* „rWfr'J   fyA X   /J,    A.,   ...    3AvJ , (97) 

Not counting quantities that are diBeiisionloss, n?e HG$ regard this formula 
as a relation aaoog the 3^ quantities   Cgi of dimension    (Was J / [length] 
[tiroej,   the quantity   £|Jk   of diasnston   JfgassJ/ [tengtnj,   and the 
pressure  ö of dissension     {juasaj/ [lengthJ [time)  .   Since these 3*-^ 2 
quantities are all expressible in terms of the two fandacental dimensions 
f,massj/^ecgthj  and   [time}, thtre must be a relation anong J* distension* 
less ratios formed froä then: 

= 0. 
(98) 

8y the fsrsaüa (96) wa say espreaa this result in the fora 

7, *'•' * (99) 

where we have omitted to arite the 3^ quantities VtQ//<0 explicitly in the 
function 4  at the right ainc© they are dinenslonless functions of the other 
arguments of f e  this :*easoning can be repeated for the coefficients of 
each order, so that we obtain as our final fora for the dissipation function 

■ <HM%--' W« 
00 <*'■/ 

4 r A Y'i ,-£ ?A (100) 

where 

flV,^m =>y«...^V7"'7f^
J'4*v''J^A (101) 

and is diEansionlsas, 

A fluid is isotronig if <p is invariant in for» under transfonsatioas 
of the Eulerian ecordinates» Since sny invariant function of a 3 rowed square 
matrix is a function of three independent invariants of that »atrlx, and since 
thf quantities: .        .    * 

for«! such a 30t of invariants, for Isotropie fluids £ mat be of the fonts 

(102) 
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where \/&ajyM//fo t  \t  %» £3,,.,* are dimensionless function of 

P /p, T^0, ®&), B{2)»'*'* B(k)* A aDdyÄ ^© shall call "first-order co- 
efficients of viscosity," Kj, &2> % "second-order coefficients of vis- 
cosity», etc. Of course the coefficients of viscosity A aady^ used here 
have no relation to the constants of Lame -A and ju   used in the theory of 
elasticity. 

The expansion (102) is the analogue for viscous fluids of Muraaghan'e 
formula (79) for perfectly elastic solids» With the aid of the definition 
(38) w© my deduce from it the following viscous-stress - deforestion-rate 
relations: 

(103) 

The classical Iidvier-Stokes equation (59) thus appears as a first»order 
linear approximation«, In the theory of elasticity the criterion for break« 
ing off the expansion (79) after the quadratic terms is simply that the 
strain be snail» To formulate an analogous criterion for viscous fluids 
let us introduce the dimensionless ntusbsr'Vi 

f 
Then the lteear Navier-Stokes  equation is a sufficient approximation if 

2r< < X        • (105) 

Thus the classical linear theory may be expected to become inadequate for 
very viscous fluids, for fluids subjected to very low pressures, or for 
fluids being rery violently deformed» If »e suppose that %5^i , then for 
water at a strsss^pressure of one atmosphere the enormous distortion rate 
of 2,000,000 sec"1 is required in order that V bo of the order of 1. 
Burnett's derivation of the equations of slip flow from kinetic theory gives 
vl3cou3**ot.rea8 - &efors<«tion*rate relations which essentially agree with the 
formula (103), as far as the latter goes, but include also terms involving 
gradients of the thermedynamic state which the present theory does not in- 
clude, since tbsy do not satisfy the defining postulate (85). Burnett's 
result indicates that when a gas becoases sufficiently rarefied that it 
ceases to obey the Navier-Stekas equations it ceases also to exhibit some 
of the fundamental properties of fluids (ref. b). 

From the formula (103) we see that 

< - fa ■>■ vX+$■l(x<f K$* *« V> O • • •(lc6) 
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Then from the definitions (19) and (22) since 7T.ro it follows that for 
compressible fluids 

sip-pMm^fi-hflM+K^+K, f/ i£J4- ,(107) 

Thus the thermodynamic pressure p  and the stress pressure p   are in 
general unequal* In order that pf^p the coefficients of each tern in the 
expansion (107) oust vanish:     ' 

The first of those conditions on the material constants of the fluid is the 
classical Stokes relation. It is easy to see that in general the number of 
independent rj*forder coefficients of viscosity is equal to the number of 
different partitions of r as a sum of multiples of 1, 2, and 3, but if 
p~f* there will remain only one independent coefficient of viscosity of 
each order. Duhem (quoted in ref, g, p. 498) has shown that for the 
classical linear theory the second law of thermodynamics (48) is equivalent to t 

I to the conditions 

ytiZO)       sX^-2/U^C  . (109) 
I; 
1 \ His analysis is not easily extended to the general case, and it is not 

clear what are the proper generalizations of these inequalities. For in- 
compressible fluids the function TT has not been specified and the continu- 
ity equation (45) implies that^/=ö .  Instead of equation (107) we have 

Hence in the classical linear theory of incompressible fluids even though 
the function TT in the definition (19) was left porfeotly general the 
nature of the Bavier-Stokes equation forces it to be the stress pressure, 
but in the general theory the equality rr* f>  is equivalent to a sequence 
of relations among the coefficients: 

XII, Conclusion 

The familiar analogy between the theory of elasticity and the theory 
of viscous fluids rests upon the rather superficial similarity of the class- 
ical linear force laws (58) and (59)» A more physical and less heuristic 
formulation of these two models of Newtonian continua reveals them to be 
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1 
rather oppooitoa than analogues. An elastic body la a conservative mechan- 
ical system which responds only to present strain from a prafmved initial 
state and which cannot Interconvert mechanical and thermal energy, while a 
viscous fluid is a diasipative mechanical system In which the rate of dis- 
sipation of energy depends only upon the instantaneous rate of deformation. 
When these concepts are expressed in mathematical tarns we obtain the 
general non-linear force laws (30) ami (102), respectively, between which 
no fornal analogy is apparent, The two theories now exhibit a deeper kin- 
ship, however, in that each is toe tneory of a special model of a Ifewtonlan 
continuum subject to all ths general laws listed in part VII, and eaoh is 
defined by specifying the functional dependence upon suitable variables of a 
scalar function representing ths energy or rate of dissipation of energy,, 

C„ A, Truesdell 

R„ Ne Schwartz 

CATtRHSjgrt 
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